Ergodic Theorems in Demography
نویسنده
چکیده
The ergodic theorems of demography describe the properties of a product of certain nonnegative matrices, in the limit as the number of matrix factors in the product becomes large. This paper reviews these theorems and, where possible, their empirical usefulness. The strong ergodic theorem of demography assumes fixed age-specific birth and death rates. An approach to a stable age structure and to an exponentially changing total population size, predicted by the Perron-Frobenius theorem, is observed in at least some human populations. The weak ergodic theorem of demography assumes a deterministic sequence of changing birth and death rates, and predicts that two populations with initially different age structures will have age structures which differ by less and less. Strong and weak stochastic ergodic theorems assume that the birth and death rates are chosen by time-homogeneous or time-inhomogeneous Markov chains and describe the probability distribution of age structure and measures of the growth of total population size. These stochastic models and theorems suggest a scheme for incorporating historical human data into a new method of population projection. The empirical merit of this scheme in competition with existing methods of projection remains to be determined. Most analytical results developed for products of random matrices in demography apply to a variety of other fields where products of random matrices are a useful model.
منابع مشابه
The ergodic theorems of demography: a simple proof.
Standard proofs of the ergodic theorems of demography rely on theorems borrowed from positive matrix theory, tauberian theory, and the theory of time-inhomogeneous Markov matrices. These proofs are efficient and expedient, but they give little direct insight into the mechanism that causes ergodicity. This paper proposes a simple and unified proof of the two ergodic theorems. It is shown that th...
متن کاملNon-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کاملWeak ergodicity of population evolution processes.
The weak ergodic theorems of mathematical demography state that the age distribution of a closed population is asymptotically independent of the initial distribution. In this paper, we provide a new proof of the weak ergodic theorem of the multistate population model with continuous time. The main tool to attain this purpose is a theory of multiplicative processes, which was mainly developed by...
متن کاملSOME ERGODIC PROPERTIES OF HYPER MV {ALGEBRA DYNAMICAL SYSTEMS
This paper provides a review on major ergodic features of semi-independent hyper MV {algebra dynamical systems. Theorems are presentedto make contribution to calculate the entropy. Particularly, it is proved that thetotal entropy of those semi-independent hyper MV {algebra dynamical systemsthat have a generator can be calculated with respect to their generator ratherthan considering all the par...
متن کاملErgodic Theorems and Approximation Theorems with Rates
A-ergodic nets and A-regularized approximation processes of operators are introduced and their convergence theorems are discussed. There are strong convergence theorems, uniform convergence theorems, theorems on optimal convergence, and theorems on non-optimal convergence and its sharpness. The general results provide unified approaches to investigation of convergence rates of ergodic limits an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007